
Speeding Up Thread-Local Storage Access in Dynamic
Libraries in the ARM platform

Glauber de Oliveira Costa
IC-Unicamp

glommer@gmail.com

Alexandre Oliva
Red Hat and IC-Unicamp

aoliva@redhat.com, oliva@lsd.ic.unicamp.br

Abstract

As multi-core processors become the rule
rather than the exception, multi-threaded pro-
gramming is expected to expand from its cur-
rent niches to more widespread use, in software
components that have not traditionally been
concerned about exploiting concurrency. Ac-
cessing thread-local storage (TLS) from within
dynamic libraries has traditionally required
calling a function to obtain the thread-local ad-
dress of the variable. Such function calls are
several times slower than typical addressing
code that is used in executables. While instruc-
tions used in executables can assume thread-
local variables are at a constant offset within
the thread Static TLS block, dynamic libraries
loaded during program execution may not even
assume that their thread-local variables are in
Static TLS blocks.

Since libraries are most commonly loaded as
dependencies of executables or other libraries,
before a program starts running, the most com-
mon TLS case is that of constant offsets. Re-
cently, an access model that enables dynamic
libraries to take advantage of this fact without
giving up the ability to be loaded during ex-

ecution was proposed and succesfully imple-
mented on IA32, AMD64/EM64T and Fujitsu
FR-V architectures. On these systems, experi-
mental results revealed the new model consis-
tently exceeds the old model in terms of perfor-
mance, particularly in the most common case,
where the speedup is often well over 2x, bring-
ing it nearly to the same performance of access
models used in plain executables.

This paper details this new access model and
its implementation for ARM processors, high-
lighting its particular issues and potential gains
in embedded systems.

1 Introduction

As mainstream microprocessor vendors turn to
multi-core processors as a way to improve per-
formance [1, 2], the relevance of multi-threaded
programming to leverage on such potential per-
formance improvements grows. Embedded
systems pose their own challenges, such as de-
livering high performance with minimum size
and low power consumption.



Besides the common difficulty multi-threaded
programs run into, namely the need for syn-
chronization between threads, it is often the
case that a thread would like to use a global
variable,1 for extended periods of time, without
other threads modifying its contents, and with-
out having to incur synchronization overheads.

Using automatic variables to achieve this is a
possibility, since each thread has its own stack,
where such variables are allocated. However,
if multiple functions need to use the same data
structure within a thread, a pointer to it must
be passed around, which is cumbersome, and
might require re-engineering the control flow
so as to ensure that the stack frame in which
the data structure is created is not left while the
data is still in use.

Widely-used thread libraries have introduced
primitives to overcome this problem, enabling
threads to map a global handle, shared by
all threads, to different values, one for each
thread. This feature is offered in the form
of function calls (pthread_getspecific
and pthread_setspecific, in POSIX [3]
threads), that are far less efficient than ac-
cess to global or automatic variables. Besides
the efficiency issues, they are syntactically far
more difficult to use than regular variables.
These were the main motivations for the intro-
duction of Thread Local Storage (henceforth,
TLS[4, 5]) features in compilers, linkers and
run-time systems, that enable selected global
variables to be marked with a __thread spec-
ifier or a threadprivate pragma, indicat-
ing that, for each thread, there should be a sep-
arate, independent copy of the variable.

By using custom low-level thread-specific im-
plementations [6], or with cooperation from the
compiler and the linker, access to thread-local
variables can be far more efficient than using

1The strictly-correct term here would be variable
whose storage has static duration.

the standard functions that offer abstractions
of thread-specific data. In some cases, such
as when generating code for dynamic libraries,
the compiler-generated code is still very in-
efficient [4] ; for main executables, access
can sometimes be just as efficient as access-
ing automatic or global variables. The mech-
anism proposed by Oliva and Araújo [4] yields
a major speedup, that brings the performance
of TLS access in dynamic libraries close to
that of executables. Such a mechanism has
been proved successful after implemented in
the Fujitsu FR-V, x86_64 and i386 architec-
tures. On the ARM platform, a typical choice
for embedded systems [7], work has been done
to provide such improvements, while keeping
in mind all the restrictions that may be imposed
upon embedded systems

1.1 Terminology and organization

In this paper, we use the term loadable mod-
ule, or just module, to refer to executables, dy-
namic libraries and the dynamic loader. A pro-
cess may consist of a set of loadable modules
consisting of exactly one executable, a dynamic
loader (for dynamic executables) and zero or
more dynamic libraries. We call initial mod-
ules the main executable, any dynamic libraries
it depends upon (directly or indirectly) and
any other dynamic libraries the dynamic loader
chooses to load before relinquishing control to
the main executable. Moreover, we use the
term dlopened modules to refer to modules
that are loaded after the program starts run-
ning, typically by means of library calls such
as dlopen.

This paper is organized as follows: section 2
gives background material about TLS symbols
and the novel concept of TLS descriptors. Sec-
tion 3 details the proposed extensions in the
ABI for enabling it in the ARM platform, while



section 4 unveils the needed changes in the cur-
rent ABI and the tools covered by this work.
Performance measures are then shown in sec-
tion 5. Finally, section 6 sheds light on what
there is yet to be done in the field of TLS ac-
cess, specially for its broader acceptance.

2 Background

GCC, since version 3.3 [8], has provided the
ability of marking a variable with a __thread
modifier, which causes it to be marked as a TLS
symbol. Each module containing TLS symbols
has a section containing the initial values in the
TLS block. For all TLS symbols this module
exports, there is a fixed offset within such a
block in which the symbol can be found.

An initial module is guaranteed to have its TLS
data laid out as part of the Static TLS block, a
per-thread data structure whose per-thread ad-
dress is held in a thread pointer, normally a re-
served register. Since the same layout is used
for the Static TLS blocks of all threads, the rel-
ative address from the thread pointer to a sym-
bol defined in such a module is constant for all
threads.

At a fixed location in the Static TLS block,
there is a pointer to another data structure called
the Dynamic Thread Vector, henceforth, DTV.
When a module is dlopened or dlclosed
the thread’s DTV may have to be modified to
add or remove the module’s TLS block.

Figure 1 shows these data structure and the iter-
ations between them. Access to a TLS symbol
can be performed in any one of four models:

Initial Exec is used when the symbol is in
a module loaded at start-up time with the ex-
ecutable. The relative address is a fixed offset

from the thread pointer, and can be written to
a specific GOT entry at load time. The main
drawback of this access model is that, by using
it, we give up the ability to dynamically load
the module.

Local Exec is used when the symbol is de-
fined in the main executable. In such a case, no
additional effort is needed to compute the vari-
able address, that is at a constant offset from the
thread pointer known at link time. The model
is not suitable for symbols defined in a dynamic
library, because even though the offset will be
a constant at run time, it is not a link-time con-
stant.

General Dynamic is the most general of all
four models, covering both the initial and dy-
namic module load cases. Address resolution
goes through a call to __tls_get_addr,
that by a lookup in the DTV, loads the variable
address. As parameters, it receives the module
identifier and the symbol offset within the mod-
ule’s TLS section.

Local Dynamic is a variant of the General
Dynamic model for symbols living in the same
module. The call to __tls_get_addr re-
ceives a zero-offset parameter, in a way that it
returns the base address of the module. Subse-
quent access may then just add to it the symbol
offset.

In some platforms, when a module that has
symbols using the initial exec or dynamic mod-
els is linked into an executable, the linker can
perform a relaxation step, allowing the access
to be turned into more efficient ones, without
any loss of generality (dlopening executables
does not make sense). In the ARM current ABI,
no such relaxations are specified.



DTV

Static TLS Block

Module Index

Offset

TP

Offset

TP offsets

Dynamic TLS Blocks

x zy

Figure 1: Data structures used for TLS han-
dling. Static TLS block, the DTV, and the it-
erations between them

For dynamic libraries, whether the mod-
ule is initially loaded with the executable
or dlopened, access go through a call to
__tls_get_addr, whose two arguments,
the module ID and the symbol offset inside the
module are stored in two GOT entries. How-
ever, for the most common case of a module be-
ing loaded along with the main executable, the
variable address lies in the Static TLS block,
therefore being at a constant offset from the
thread pointer.

The main idea behind TLS descriptors [9] is
to take advantage of this common case by us-
ing the same number of GOT entries the origi-
nal TLS model uses, in a slightly different way.
One of the entries is used by a load-time cho-
sen specialization function, while the remain-
ing space is filled with a parameter to this func-
tion, whose meaning is dependant of the type
of specialization.

In the case the module is loaded along with the
executable, we use the thread-pointer offset as
the parameter, and the specialization call just
returns it, without the need to issue a call to the
time-consuming __tls_get_addr. For the
dynamic load case, the specialization uses the
information provided by the parameter to call
__tls_get_addr or to perform equivalent
optimized steps it may see fit. Other specializa-
tions can also be used for some more specific
cases.

Ideally, we should be also able to relax the code
sequences in case of linking into executables,
which is missing in the current ABI.

3 ARM TLS Descriptors

The ARM ABI currently specifies the use of
two consecutive GOT entries [10] for TLS sym-
bols relocations. In the same amount of space,
we store TLS descriptors. The first entry con-
tains the parameter for the specialized function
while the second holds the pointer to the func-
tion itself. This slight difference from the previ-
ous implementations [11], that uses the first pa-
rameter as the specialization while the second
holds the parameter, allowed us to keep the call-
ing convention of parameter passing primarily
in the r0 register, with no additional effort.

As we use new relocations to drive our mecha-
nism, our model can also coexist with modules
that uses the old TLS model, i.e. old modules
can be linked with TLS Descriptors-enabled
ones with no penalties other than a size increase
of 8 bytes per symbol that uses both models, as
each relocation will point to a different pair of
GOT entries.

If the size increase is not worth the performance
gain for some workload, it’s still possible to go
with the old model completely, as detailed in
section 4

The sequence used to issue access to TLS
symbols in the pre-existing general dynamic



model2 is as follows:

ldr r0, .Lt0
.L1: add r0, pc, r0

bl __tls_get_addr(PLT)
.Lt0:

.word variable(tlsgd) +
(. - .L1 - 8)

Our new model then states:

ldr r0, .Lt0
.L1: bl variable(tlscall)
.Lt0:

.word variable(tlsdesc) +
(. - .L1)

The tlsdesc relocation in .Lt0 gives the
pc-relative address of the TLS descriptor rep-
resenting the thread-local variable we’re inter-
ested in. The addend of the relocation is in-
complete in order to properly allow linker re-
laxations, as stated in section 3.5 and must be
adjusted at link time.

The tlscall relocation is resolved to the ad-
dress of a linker-defined trampoline, detailed in
sections 3.3 and 3.4.

In case of Local Dynamic access model, to
avoid the definition of new relocations, the
linker defines for all modules that have a TLS
section a hidden per-module symbol called
_TLS_MODULE_BASE_ that denotes the be-
ginning of its TLS section. We’re then able
to compute the address of this special symbol,
which then serves as a base address to be added
to the offset of any subsequently accessed sym-
bol within this module in his address computa-
tion.

Argument

Function
Pointer

TP Offset

Static TLS
Specialization

Lazy TLS
Specialization

Relocation
Pointer

Dynamic TLS
Specialization

Offset

Module
Index

Counter
Generation

Figure 2: General structure of a TLS Descrip-
tor, with 3 different specialization types, for
Static and Dynamic TLS, and Lazy TLS that
decays to one of the other two on the first
use. Our model also has one more specializa-
tion that handles weak undefined symbols, not
shown in the figure.



3.1 Selecting specializations at run time

When a module is loaded, whether this happens
at startup or in a run-time call to dlopen, the
dynamic loader is provided with enough infor-
mation to devise a more efficient way to resolve
a TLS variable address.

It has to select one of a set of possible spe-
cializations through which subsequent access
to this variable may go. In our model, the pos-
sible specializations are:

Static Specialization being the most simple
one, covering the case of initial modules. As
this resolver’s argument is the GOT address of
the entry which contains the thread pointer off-
set of this symbol address, this specialization
simply loads this value in register r0 and re-
turns

Dynamic Specialization happening now
solely on dlopened modules, involving the
call to __tls_get_addr. The specializa-
tion checks whether the module’s generation
count is current enough and the TLS block
for the module is allocated, then calling
__tls_get_addr if there is really need
to. If it isn’t, the thread pointer offset of the
variable address is automatically returned.

Weak Undefined Symbols Current model
differs from the expected behaviour of sym-
bols falling in this class. This specialization is
meant to provide TLS weak undefined symbols
the same semantics they would get as a normal
symbol, namely, getting a NULL pointer as the

2The ARM ABI also defines a slightly modified ver-
sion of __tls_get_addr, that expects the address to
be relative to the link register at the time of the call, thus
making the sequence one instruction smaller.

address of their variables. To achieve this, the
specialization returns the negated value of the
thread pointer, in order to nullify the symbol
when added to it.

Lazy Specialization which allows an access
to be resolved lazily instead of at startup. Lazy
processing of relocations are detailed in sec-
tion 3.6

3.2 Linker Relaxations

The design we devised for ARM TLS descrip-
tors implementation may allow linker relax-
ations from the dynamic access models to the
exec ones, removing overheads that in general
cannot be avoided in the dynamic cases.

The result of relaxing our proposed dynamic
sequence to Initial Exec is:

ldr r0, .Lt0
.L1: ldr r0, [pc, r0]
.Lt0:

.word variable(gottpoff) +
(. - .L1 - 8)

The branch and link instruction turns into a
load. The addend of the relocation must be ad-
justed by the linker so as to provide the cor-
rect offset for it to be loaded relative to the
instruction at .L1. Currently, our proposal is
pretty much the same as that the current model
states.[10]

And by relaxing to Local Exec, we get:

ldr r0, .Lt0
nop

.Lt0:
.word variable(tpoff)

During a relaxation, the linker must not re-
move code, so as to preserve sizes, addresses



and offsets involved in operations that the com-
piler or the assembler may have already com-
puted. Therefore, the branch and link instruc-
tion is turned into a nop. In all but this re-
gard, the model is exactly what the current Lo-
cal Exec model states.[10] As the addend of the
gottpoff relocation is just a helper to the ad-
dress computation, not an offset to be applied to
the address of the variable, relaxing to tpoff
discards it entirely.

3.2.1 Returning TP offsets

Current ARM TLS ABI states that access go-
ing through the General and Local Dynamic
access models returns the final address of the
variable to be accessed, while the Initial and
Local Exec ones have to add the value held by
the thread pointer in order to get it [10]. This
design prevents linker relaxations to more ef-
ficient models when linking an executable. In
our design, all accesses returns the variable’s
offset to the thread pointer, and have therefore
to get the tp value added to it. This seldom im-
poses any overhead since ARM provides a reg-
ister+register indirect addressing mode.

3.3 Trampoline

Due to size restrictions that may be present in
embedded systems, we want to achieve effi-
cient TLS access while minimizing the number
of instructions emitted. By looking at the two
desired relaxations described in section 3.2, one
may conclude that no less than two instructions
may be used by the dynamic cases, as doing
so would prevent relaxation to the Initial Exec
model.

Loading the address of the specialized function
would usually incur in loading its pc-relative
address from the constant pool, adding pc to

it, loading the address of the chosen specializa-
tion from the GOT entry and jumping to it; too
complex a task to be done by two instructions
alone.

We thus define a per-module trampoline, that
gives us the ability of accessing a variable with
a two-instruction sequence. The complete se-
quence is indeed present and executed, but as
it’s put in a single location, we can thus achieve
significantly size reduction, specially for a high
number of accesses.

Given this, after the branch instruction that re-
ceives the tlscall relocation, the following
piece of code gets hit:

__tls_trampoline:
add r0, lr, r0
ldr r1, [r0, #4]
bx r1

As detailed in section 3, the base address the
trampoline gets after the add instruction is the
GOT address of the TLS descriptor for this
symbol, which is also the address of the pa-
rameter to the specialization. The load instruc-
tion then gets the specialization address from
the next word and jumps to it.

3.4 Inlining the Trampoline

A trade-off between code size and performance
is possible by inlining the trampoline described
in section 3.3. By avoiding the branch instruc-
tion to the trampoline address and enabling bet-
ter scheduling, we can expect the code to run
faster

To provide the ability of inlining the trampo-
line, the compiler should be able to generate
an instruction sequence that does the same job



as the trampoline would have otherwise done.
Such an instruction sequence may be:

ldr rt, .Lt1
.L1: add rx, pc, rt

ldr ry, [rx, #4]
[mov r0, rx]
blx ry

.Lt1:
.word variable(tlsdesc) +

(. - .L1)

In the previous and next examples, the mov in-
struction in brackets denotes that the specializa-
tion parameter may be a register other than r0,
and must thus be copied to it if needed. Note
that the addend is also incomplete here.

In order to keep the ability to relax the code
sequence, the instructions must be annotated,
as follows:

ldr rt, .Lt1
.tlsdescseq variable
.L1: add rx, pc, rt
.tlsdescseq variable

ldr ry, [rx, #4]
[mov r0, rx]

.tlsdescseq variable
blx ry

.Lt1:
.word variable(tlsdesc) +

(. - .L1)

Note that we do not force the use of specific
registers, other than r0 for the argument to the
resolver (see resolver functions below), grant-
ing the compiler the ability to choose the best
possible register allocation. There is no re-
quirement that the instructions be issued in this
particular sequence either, or that no other in-
structions be interspersed, or even that the val-
ues not be reused when it makes sense. It is
even permitted for different registers to be used
where the specification above implies a single
register to be used, if the value is copied from
one to the other. Such copies need not be anno-
tated.

3.5 Addend Adjustments

Depending on whether the trampoline is inlined
or not, we use different methods to compute the
absolute address of a TLS descriptor.

The out-of-line trampoline adds lr to the rela-
tive address it is passed in r0, formerly loaded
from the tlsdesc constant pool entry, where
lr contains an address that is one instruction
past the branch and link instruction annotated
with the tlscall relocation, whereas the in-
line trampoline adds pc to the relative address
loaded from the tlsdesc constant pool en-
try, where pc contains an address that is two
instructions past the address of the instruction
that refers to it.

Each case requires tlscall to be adjusted
differently, even when the sequence happens to
be relaxed, which makes matters more difficult
as the offsets that have to be different before
relaxation need to become the same after relax-
ation.

The solution that avoids the need for distinct
relocation types for inline and out-of-line tram-
polines is to provide the linker with enough in-
formation for it to make the correct decision.
We thus emit the relocation with an addend that
provides the relative location of the instruction
that is going to use the result of the relocation.

If it is a call instruction, presumed to be anno-
tated with a tlscall relocation, the linker re-
solves the relocation such that its result, added
to the lr value set by the call instruction, yields
the address of the TLS descriptor, i.e., it sub-
tracts 4 from the addend.

Otherwise, it computes the relocation result in
such a way that adding its result to the pc value
at the referenced instruction yields the address
of the TLS descriptor, i.e., it subtracts 8 from
the addend.



3.6 Lazy relocations

Although lazy relocation processing is very of-
ten applied to function calls, it is never applied
to data accesses, since there is no transfer of
control involved, and introducing it would ren-
der the access model too costly in terms of per-
formance. However, in a TLS address resolu-
tion, a control transfer is indeed involved [4],
which makes lazy processing of our newly-
introduced relocations highly desirable, for get-
ting more efficient program loading

The ability to relocate lazily is closely tied to
the ability of reading and storing two got words
atomically, as we would otherwise leave the
GOT in an inconsistent state during the func-
tion real address resolving

Unlike FR-V [12], ARM processors provides
no real atomic double-word memory opera-
tion 3, so lazy relocation processing has to go
through the acquisition of a dynamic loader
lock.

When the lazy resolver function is called, it
starts by checking if there is still need to re-
solve the symbol value, by comparing the value
present in the TLS descriptor with it’s caller’s
address. If it finds such a need, it holds the lock,
and fill the TLS descriptor entry with a tempo-
rary resolver address; a placeholder for the now
waiting threads that came late to resolution pro-
cessing.

It then proceeds with resolving the symbol the
relocation refers to, deciding which of the avail-
able specializations is to be used and setting
up the TLS descriptor according to the deci-
sion, such that subsequent calls involving the
same TLS descriptors go straight to the most

3The ldrd/strd instruction pair are atomic regarding
instruction ordering, but gives no behavioral guarantees
in the case an interrupt occurs, for example.

efficient specialization. Finally the lock is re-
leased and all the other threads possibly wait-
ing on it awaken, being the resolver last step to
jump to the specialization code chosen. This
simple mechanism is indeed the same used by
the i386 and x86_64 processors [11]

The lazy resolver needs to obtain the relocation
index and the _GLOBAL_OFFSET_TABLE_
address in order to perform lazy relocations.
The relocation index can easily fit in the argu-
ment portion of the descriptor, but loading the
GOT address in a register prior to calling the
TLS resolver was deemed as too much over-
head, since it is only necessary for the first time
a descriptor is used.

We have therefore introduced another per-
module trampoline, that TLS descriptors eli-
gible for lazy relocation get as their resolver.
The address of this trampoline is communi-
cated to the dynamic loader by means of a
dynamic table entry: DT_TLSDESC_PLT. It
loads the address of the actual resolver from a
GOT entry, whose address is informed to the
dynamic loader with another dynamic table en-
try: DT_TLSDESC_GOT. The dynamic loader
is responsible for filling in the named GOT en-
try with the address of the actual TLS lazy re-
solver address, whose name can thus remain in-
ternal to the dynamic loader.

4 Implementation issues

Two new options were added to GCC for con-
trolling TLS descriptors behavior, namely:

• -mtls-dialect, which drives the se-
lection of an access model for this object,
receiving the options arm and gnu, the
old and new models respectively.



• -mtls-inline-trampoline, a bi-
nary option that enables the use of the in-
line trampoline performance optimization

4.1 ABI addenda

We have added the following new relocation
types:

R_ARM_TLS_GOTDESC is emitted by the
assembler as (tlsdesc), being resolved by
the linker to the address of the first GOT word
in the TLS descriptor. Upon facing this reloca-
tion, the linker must first adjust the relocation
addend accordingly, as described in section 3.5

R_ARM_TLS_CALL is emitted by the as-
sembler as (tlscall), and is resolved by the
linker to the address of the trampoline.

R_ARM_TLS_DESCSEQ is emitted by the
assembler, annotating the instructions in the
call path for the inline trampoline. Its rationale
and usage are described in section 3.4.

R_ARM_TLS_DESC is emitted by
the linker in response to R_ARM_TLS-
_GOTDESC and/or R_ARM_TLS_CALL and
gets no addend. The dynamic loader then
resolves it to the specialization function it
decided to use for access to this symbol.

As the current ARM ABI states preference for
the use of REL relocations [13], so are our
newly defined relocations.

Furthermore, our implementation also makes
uses of two newly defined [11] Dynamic
Table entries, DT_TLSDESC_PLT and
DT_TLSDESC_GOT, which have their

usage and motivation are explained in sec-
tion 3.6, and a new hidden symbol, namely
_TLS_MODULE_BASE_.

4.2 Specialized calling conventions

Besides specifications of where arguments are
passed and where return values are stored, an-
other important aspect of calling conventions
is that of defining which registers a function
can modify without preserving (caller-saved or
call-clobbered), and which have to be saved be-
fore they can be modified (callee-saved or call-
preserved).

Since in this work we are defining a new inter-
face for __tls_get_addr specializations,
we might as well define the conventions regard-
ing preserved registers to privilege the most
common cases. We have thus defined that the
specializations are to preserve all registers they
modify, including the usually call-clobbered
ones. Three registers are exception to this rule,
namely r0, expected to return the value we
need; r1, expected (but not required) to hold
the throw-away resolver address; and the pro-
cessor flags, that would be too expensive to
save and restore, compared with the benefit it
might bring.

5 Performance

To figure out the speedup obtained by our
model, we ran an adaptation of the bench-
mark that the x86 processors went through [4].
Tests have been conducted on an OMAP1611
ARM board, featuring an ARM 926 proces-
sor, running a 2.6.12 series kernel. A major
difference from previous tests is the method
we used access times. Unlike x86 [14] and
ARM Xscale [15] processors, ARM 926 lacks a



benchmark cycle measuring instruction. Time
measurements were then made using libc’s
clock() call, giving us an approximation of
the time used, in microseconds resolution. We
thus run an access pattern repeatedly within a
loop, and then divide the total time by the num-
ber of iterations to estimate the per-iteration
time, expecting the error incurred by the coarse
measure to be negligible compared to the total
run time.

Another important difference is the absence of
the distinction between internal and external
timing, as the system call overhead would dom-
inate the access time in an internal timing sce-
nario.

A comparison is shown between a shared li-
brary compiled with the arm TLS dialect, and
our newly proposed gnu one. Execution series
are divided in five categories, as follows:

• SE tests access a variable with the Initial
Exec model.

• SR tests access a variable in the General
Dynamic method, which is aliased to a
variable previously accessed with Initial
Exec. Wherever applicable, we expect ac-
cess to this variable to be relaxed by the
linker.

• SG tests access a variable defined in the
main executable, thus living in the Static
TLS block. There is no way to be aware
of it at link time, so the General Dynamic
model is expected to be chosen. Our
model, however, should be able to notice it
at load time, and fill the GOT entries with
the static specialization.

• DG tests access a variable defined in
the shared library. As the libraries are
dlopened during the execution, the call
to __tls_get_addr has to be issued.

In our model, it corresponds to using the
dynamic specialization.

• DC tests access a mixture of the previous
variables. It aims to simulate a more com-
plex environment.

All these tests are run in four different configu-
rations, varying two dimensions. The first one
is the access operation, either a full load, in
which we use the variable contents, or just an
address resolution. Besides that, we simulate
situations in which we put pressure in the reg-
ister allocator by marking all available registers
as allocated, or no pressure at all.

Table 1 shows the tests results obtained in those
scenarios. Ov and Nv are the results with the
old and new model respectively, with all regis-
ters marked as used. Accordingly, On and Nn
shows the results with no pressure over the al-
locator. Results are shown for both accessing
methods, labeled load and addr

Figures 3, 4, 5, 6 and 7 shows the average time
comparison between old, on the left, and new
model, on the right, for each of the five scenar-
ios tried. In labels, N stands for no pressure
over the register allocator while V for its op-
posite. L stands for a variable-load test, while
A an address-computing only. The dashed line
shows the estimated overhead, computed from
a run with the same number of iterations of a
configuration that does not call an actual access
function.

5.1 Analysis

From the data in table 1 and the five charts
presented, one can see that our model consis-
tently outperforms current one. SE tests can
be thought as a lower bound as they access a
variable defined in the module itself, and as
expected, went to very similar results in both



Model Op On Nn Ov Nv
SE load 505 505 578 578

addr 449 443 609 625
SR load 1301 521 1377 588

addr 1273 494 1424 625
SG load 1298 589 1366 662

addr 1274 565 1424 703
DG load 1304 863 1377 925

addr 1279 838 1429 975
DC load 2243 1036 2300 1055

addr 2097 970 2304 1202

Table 1: Experimental results showing a series
of 100000000 runs. The estimated overhead
was found to be 120 ns. Values presented are
the average in the set, in nanosecond scale.

0

150

300

450

600

750

NA VA NL V L

Figure 3: Comparison chart of access times in
nanoseconds between the old and new model
for the SE tests

0

250

500

750

1000

1250

1500

NA VA NL V L

Figure 4: Comparison chart of access times in
nanoseconds between the old and new model
for the SR tests

0

250

500

750

1000

1250

1500

NA VA NL V L

Figure 5: Comparison chart of access times in
nanoseconds between the old and new model
for the SG tests

0

250

500

750

1000

1250

1500

NA VA NL V L

Figure 6: Comparison chart of access times in
nanoseconds between the old and new model
for the DG tests

0

400

800

1200

1600

2000

2400

NA VA NL V L

Figure 7: Comparison chart of access times in
nanoseconds between the old and new model
for the DC tests



models. SR tests delivers a speedup up to 2.5
times, due to the now-present ability to relax a
code sequence to a more efficient access model.
For those we consider to be the common case,
namely SG tests, we deliver results at least 2.2
times better than the old model did.

Experiments also show that our model’s
dynamic specialization leverages better re-
sults than calling __tls_get_addr directly.
While at a first glance it may seem illogical, we
can avoid the call to __tls_get_addr in the
most common situation, which is the one sim-
ulated here, where runtime load or unload of a
module is rare resulting in the DTV being suf-
ficiently recent [4]

6 Future Work

The implementation on the GNU toolchain is
nearly finished and about to be submitted up-
stream. Furthermore, support to more widely
used C libraries in the embedded world, such
as the uClibc would certainly be more than
welcome, and may get into the spotlight as its
NPTL support matures.

As the TLS descriptor access model proves it-
self successful, other architectures may have
enough stimuli for embracing its benefits. In
this implementation, though not the main fo-
cus, we tried to keep the design as friendly as
possible for a future Thumb ABI extension.

More experiments also have to be conducted to
verify if our predictions regarding the speedups
by inlining the trampoline are true, and by how
much.

7 Conclusion

Although slightly different due to architecture
specificity, the TLS descriptors implementation

could rely on, and in some points extend, most
features found in previous implementations.

We were able to add more flexibility to the ABI
for the symbols using our new model. Relax-
ation to more efficient access models were not
possible using the original TLS access model,
being now completely feasible both to Local or
Initial Exec. Generating code with the expected
behavior for Weak Undefined Symbols is now
also possible, with minimum effort/overhead.

Such flexibility increase came along with a
substantial performance improvement, which
is enough to consider the model worthwhile.
With this in mind, we expect TLS descriptors
to be the de facto choice for TLS symbols han-
dling.

Acknowledgements

Glauber de Oliveira Costa thanks his family for
the endless support, Professor Guido Araújo
for the opportunity of using time of his course
for this implementation; INdT for providing
fancy ARM boards; The guy (or entity) who in-
vented caffeine, whoever he is, for keeping us
all awake during hard times; Chuck Norris, for
having counted to infinity (twice). [16]

Alexandre Oliva thanks Red Hat, for having
permitted him to pursue the initial ideas of TLS
Descriptors. He also seconds Glauber’s grati-
tude towards INdT and professor Guido. Not
to feel left behind, he also thanks the entity that
came up with coffee and guaraná. Drink mod-
erately!

References

[1] Herb Sutter. The free lunch is over: a
fundamental turn toward concurrency in



software. Dr. Dobb’s Journal, 30(3),
2005. http:
//www.gotw.ca/publications/
concurrency-ddj.htm.

[2] Kunle Olukotun and Lance Hammond.
The future of microprocessors. ACM
Queue, 3(7):26–34, September 2005.

[3] Portable Applications
Standards Committee of the IEEE
Computer Society and The Open Group.
Portable Operating System Interface
(POSIX), The Base Specifications. IEEE
Std 1003.1, 2004. Issue 6, Incorporating
Technical Corrigendum 1 and Technical
Corrigendum 2.

[4] Ulrich Drepper. ELF Handling for
Thread-Local Storage.
http://people.redhat.com/
drepper/tls.pdf, February 2003.
Version 0.20.

[5] John R. Levine. Linkers and Loaders.
Morgan Kaufmann, October 1999.

[6] Hans-J. Boehm. Fast multiprocessor
memory allocation and garbage
collection. Technical Report 165, HP
Labs, 2000.

[7] David A. Patterson and John L.
Hennessy. Computer Organization and
Design. Morgan Kaufmann, third
edition, 2005.

[8] GCC 3.3 Release Series Changes, New
Features, and Fixes.
http://gcc.gnu.org/gcc-3.3/
changes.html.

[9] Alexandre Oliva and Guido Araújo.
Speeding up thread-local storage access
in dynamic libraries. In Proceedings of
the GCC Developer’s Summit, pages
159–178, June 2006.

[10] Lee Smith. Addenda to, and Errata in,
the ABI for the ARM architecture.
http://http://www.arm.com/
miscPDFs/8693.pdf, May 2006.

[11] Alexandre Oliva. Thread-Local Storage
Descriptors for IA32 and
AMD64/EM64T. http://people.
redhat.com/aoliva/writeups/
TLS/RFC-TLSDESC-x86.txt,
October 2005. Version 0.9.4.

[12] Alexandre Oliva and Aldy Hernandez.
The FR-V thread-local storage ABI.
http://people.redhat.com/
aoliva/writeups/FR-V/
FDPIC-TLS-ABI.txt, December
2004. Version 0.22.

[13] Richard Earnshaw. ELF for the ARM
architecture. http://www.arm.
com/miscPDFs/8030.pdf, May
2006.

[14] Intel Corporation. IA-32 Intel
Architecture Software Developer’s
Manual, volume 2: Instuction Set
Reference. Intel Corporation, 2003.

[15] Intel Xscale Core - Developer’s Manual.
http://download.intel.com/
design/intelxscale/
27347302.pdf, 2004.

[16] Chuck Norris Facts. http:
//www.chucknorrisfacts.com.


