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Abstract

As multi-core processors become the norm
rather than the exception, multi-threaded pro-
gramming is expected to expand from its cur-
rent niches to more widespread use, in soft-
ware components that have not traditionally
been concerned about exploiting concurrency.

Accessing thread-local storage (TLS) from
within dynamic libraries has traditionally re-
quired calling a function to obtain the thread-
local address of the variable. Such function
calls are several times slower than typical ad-
dressing code that is used in executables. While
instructions used in executables can assume
thread-local variables are at a constant offset
within the thread Static TLS block, dynamic li-
braries loaded during program execution may
not even assume that their thread-local vari-
ables are in Static TLS blocks.

Since libraries are most commonly loaded as
dependencies of executables or other libraries,
before a program starts running, the most com-
mon TLS case is that of constant offsets. This
paper proposes an access model that enables
dynamic libraries to take advantage of this fact,

without giving up the ability to be loaded dur-
ing program execution. This new model was
implemented and tested on GNU/Linux sys-
tems, initially on the Fujitsu FR-V architecture,
and later on IA32 and AMD64/EM64T, such
that performance could be compared with that
of the existing models.

Experimental results revealed the new model
consistently exceeds the old model in terms of
performance, particularly in the most common
case, where the speedup is often well over 2x,
bringing it nearly to the same performance of
access models used in plain executables.

1 Introduction

As mainstream microprocessor vendors turn
to multi-core processors as a way to improve
performance[1, 2], the relevance of multi-
threaded programming to leverage on such po-
tential performance improvements grows.

Besides the common difficulty multi-threaded
programs run into, namely the need for syn-
chronization between threads, it is often the
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case that a thread would like to use a global
variable,1 for extended periods of time, without
other threads modifying its contents, and with-
out having to incur synchronization overheads.

Using automatic variables to achieve this is a
possibility, since each thread has its own stack,
where such variables are allocated. However,
if multiple functions need to use the same data
structure within a thread, a pointer to it must
be passed around, which is cumbersome, and
might require reengineering the control flow so
as to ensure that the stack frame in which the
data structure is created is not left while the data
is still in use.

Widely-used thread libraries have introduced
primitives to overcome this problem, enabling
threads to map a global handle, shared by
all threads, to different values, one for each
thread. This feature is offered in the form
of function calls (pthread_getspecific
and pthread_setspecific, in POSIX[3]
threads), that are far less efficient than access
to global variables and even less efficient than
access to automatic variables. Besides the ef-
ficiency issues, they are syntactically far more
difficult to use than regular variables. These
were the main motivations for the introduction
of Thread Local Storage (henceforth, TLS[4,
5]) features in compilers, linkers and run-time
systems, that enable selected global variables
to be marked with a __thread specifier or a
threadprivate pragma, indicating that, for
each thread, there should be a separate, inde-
pendent copy of the variable.

By using custom low-level thread-specific
implementations[6], or with cooperation from
the compiler and the linker, access to thread-
local variables can be far more efficient than
using the standard functions that offer abstrac-
tions of thread-specific data. In some cases,

1The strictly-correct term here would be variable
whose storage has static duration.

such as when generating code for dynamic li-
braries, the compiler-generated code is still
very inefficient, for reasons detailed in Sec-
tion 2; for main executables, access can some-
times be just as efficient as accessing automatic
or global variables. The mechanisms intro-
duced in Section 3, based on the novel con-
cept of TLS Descriptors[7, 8], yield a major
speedup, that brings the performance of TLS
access in dynamic libraries close to that of exe-
cutables, as shown in Section 4. Section 5 sum-
marizes the results with some final remarks and
future directions.

2 Background

In this paper, we use the term loadable mod-
ule, or just module, to refer to executables, dy-
namic libraries and the dynamic loader. A pro-
cess may consist of a set of loadable modules
consisting of exactly one executable, a dynamic
loader (for dynamic executables) and zero or
more dynamic libraries. We call initial mod-
ules the main executable, any dynamic libraries
it depends upon (directly or indirectly) and
any other dynamic libraries the dynamic loader
chooses to load before relinquishing control to
the main executable. Moreover, we use the
term dlopened modules to refer to modules
that are loaded after the program starts run-
ning, typically by means of library calls such
as dlopen.

Every loadable module may define a memory
address range delimiting its TLS segment. This
range, after relocation processing, contains the
memory image to be used to initialize the TLS
block associated with that module, for each dif-
ferent thread.

For every thread, two data structures are al-
located: a Static TLS Block and a Dynamic
Thread Vector (DTV), as depicted in Figure 1.
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Figure 1: Per-thread data structures used to
support TLS.

A reserved register, called the Thread Pointer
(TP, for short), points to a base address within
that thread’s Static TLS Block. At a fixed rel-
ative location within the Static TLS Block lies
a pointer to the DTV. The DTV, in turn, starts
with a generation counter, followed by point-
ers to TLS Blocks. For every module contain-
ing a TLS segment, a module index is assigned,
that indicates the entry in each thread’s DTV re-
served to hold a pointer to the TLS Block cor-
responding to that module.

The dynamic loader can use information about
the TLS segments of all initial modules to
lay out the Static TLS Block. Each thread’s
static block will contain TLS blocks for all ini-
tial modules. Using the same layout for all
threads implies that the relative locations, in
the Static TLS Block, of the initial modules’s
TLS blocks’s are the same across all threads,
thus enabling not only efficient code generation
for some TLS access models, but also the opti-
mization proposed in Section 3.

2.1 Access Models

If a main executable contains a TLS segment,
the dynamic loader not only reserves the first
entry in the DTV for it, but also lays out the
Static TLS Block in such a way that the offset
from the TP to the executable’s TLS block is
a constant computable at link time. The exact
location of the executable’s TLS block within

the Static TLS Block only depends on the size
and alignment requirements of the executable’s
TLS segment, and conventions set by the Ap-
plication Binary Interface (ABI) of the hard-
ware architecture and operating system. Since
the linker can compute the offset from the TP
to the executable’s TLS block, and the relative
location of a variable defined within this block,
it can compute the exact TP offset of such a
variable (say, variable x in Figure 1), and use
that as a displacement from the TP to access the
variable. This access model is known as Local
Exec. It is the most efficient, but least general,
access model, since only the main executable
can use it. In theory, all initial modules could
use it, but this would require text segments to
be modified at dynamic relocation processing
time, and modifying text segments is highly un-
desirable, mainly because it prevents page shar-
ing across multiple processes, which is what
shared libraries are supposed to enable.

An example of computing the address of a vari-
able var into register reg using the Local
Exec access model, in low-level pseudo code,
is given below. TPoff is a functional notation
to denote the TP offset of a variable.

let reg← TP + TPoff(var)

Accessing thread-local variables that are not
defined in the main executable preclude the use
of the Local Exec access model. The main ex-
ecutable, however, can still take advantage of
the fact that every dynamic library it depends
on, that might provide the variable it wants to
access, is an initial library, and therefore its
relative location within the Static TLS Block
is a run-time constant, which holds for vari-
ables x and y in Figure 1. Emitting a reloca-
tion to get the dynamic loader to compute this
run-time constant and store it into a Global Off-
set Table (GOT) entry, and using this constant,
loaded from the GOT, as an offset from the TP



162 • Speeding Up Thread-Local Storage Access in Dynamic Libraries

to access the variable, is called the Initial Exec
access model. Under certain circumstances, it
may be used in dynamic libraries as well, but it
may come at the cost of being unable to dlopen
such libraries. The use of indirection through
the GOT, allocated in the data segment, not
only retains the ability to share pages of code,
but also merges all the dynamic address com-
putation related with a symbol into a single lo-
cation, reducing the number of dynamic reloca-
tions needed.

An example of computing the address of vari-
able var into register reg using the Initial
Exec access model follows. GOT, in such low-
level pseudo code, denotes a reserved regis-
ter or some PC-relative addressing mode that
yields the GOT base address. GOTTPoff de-
notes the offset of a GOT entry that, at run time,
will hold the TP offset of a variable.

load reg, GOT[GOTTPoff(var)]
let reg← TP + reg

The other two access models, General Dynamic
and Local Dynamic, require the (implicit) use
of the DTV. Both access models involve call-
ing a function, normally called __tls_get_
addr, to obtain a thread-local address. Func-
tion __tls_get_addr requires two pieces
of information to compute the requested ad-
dress: a Module Index and an Offset within
the module’s TLS segment, as depicted in Fig-
ure 1 for variable z. These two pieces of infor-
mation are normally computed by the dynamic
loader, in response to relocation entries that re-
quest them to be stored in the GOT. An exam-
ple of the use of the General Dynamic access
model is given below, using adjacent GOT en-
tries and passing it by reference in a register.
Other implementations use independent GOT
entries for the two values, and/or pass them by
value. GOTModIdx\&Off is a functional no-
tation to denote the offset of a GOT entry that,

at run time, will hold a Module Index followed
by a corresponding Offset.

let reg← GOT + GOTModIdx&Off(var)
call __tls_get_addr

Local Dynamic is a variant of General Dynamic
that calls the function to compute a base ad-
dress, normally by passing the function a zero
offset. Having obtained the base address of
a module’s TLS block with a single call, the
Local Dynamic access model then uses vari-
ables’s offsets to access them using the same
base address. The offsets can all be computed
by the linker, since they are a local property
of the module. An example follows, in which
GOTModIdx denotes the GOT offset for an en-
try that, at run time, will hold the Module Index
and a zero offset, and ModOff represents the
Offset of a given variable.

let reg← GOT + GOTModIdx()
call __tls_get_addr
let reg1← reg + ModOff(var1)
let reg2← reg + ModOff(var2)

2.2 Dynamic behavior

At thread creation time, the DTV is initialized
such that every entry corresponding to an ini-
tial module points to a TLS block within the
Static TLS Block, like the second and third
slots in the DTV in Figure 1, and all other en-
tries are marked as not allocated, like the fourth
slot. Entries for dlopened modules have to be
assigned on demand to TLS blocks allocated
dynamically, as depicted by the two Dynamic
TLS Blocks in the figure. Dynamic allocation
is necessary because multiple threads may al-
ready be running at the time a new module is
loaded into a process. Function __tls_get_
addr is responsible for the run-time mainte-
nance of the DTV.
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The generation counter in the DTV is used to
keep track of such dynamically-allocated TLS
blocks: every time a dlopened module with a
TLS segment is loaded or unloaded, a global
generation counter is incremented. Function
__tls_get_addr checks whether the DTV
generation counter is up to date every time it is
called. If the DTV is found to be out of date,
the function may have to release the memory
associated with its outdated entries, to dynami-
cally resize it, and to set any released or newly-
created entries to the unallocated state.

Once the DTV is up to date, if function __
tls_get_addr finds that the requested DTV
entry is not allocated, it allocates the necessary
storage, initializes it with the contents of the
TLS segment from the corresponding module
and sets the DTV entry to the allocated address.
At last, it loads the module’s TLS block’s base
address from the corresponding DTV entry and
adds to it the variable offset it was passed as
argument, returning the result.

3 Optimization

Let us first investigate why __tls_get_
addr is perceived as so slow, and then proceed
to introducing the optimization subject of this
paper.

3.1 Inefficiencies in __tls_get_addr

It might seem that the dynamic access models
should not be so expensive, since in the most
common case, the run-time behavior of func-
tion __tls_get_addr will involve two test-
and-branch sequences, with branches predicted
not taken, followed by offsetting the base ad-
dress already loaded for the second test by the
amount given as an argument, as in the low-
level pseudo code below. DTVoff denotes the

offset from the TP to the DTV address stored
in the Static TLS block; DTVGCoff, the rel-
ative location of the generation counter in the
DTV, normally 0; DTVentrysize, the size
of a DTV entry; arg1 and arg2, the module
index and the offset, respectively; result, the
register in which __tls_get_addr returns
its result.

load reg1← TP[DTVoff]
load reg2← generation_counter
branch to slow path 1 if reg1[DTVGCoff] < reg2
load reg2← reg1[arg1 × DTVentrysize]
branch to slow path 2 if reg2 == UNALLOCATED
let result← reg2 + arg2
return

The first test, however, involves a global vari-
able, the global generation counter. Accessing
a global variable can be relatively expensive in
such a simple function, since it may require set-
ting up the GOT register to compute its address,
if PC-relative addressing is not available.

A bigger performance penalty follows from the
compiler’s inability to shrink-wrap functions[9,
10], namely, to avoid saving and restoring reg-
isters, and even setting up a stack frame, in
the fast path that issues no function calls and
needs only two scratch registers. Since the slow
paths issue function calls, compilers will gener-
ally set up a stack frame for the entire function,
and since such paths are complex, possibly re-
quiring multiple registers, several such registers
have to be saved and restored every time the
function is called, even though they are seldom
actually used.

Although some register saving and restoring
performance can be recovered by means of
shrink-wrapping, compilers cannot help the
fact that the definition of __tls_get_addr,
in the dynamic loader, is publicly visible and
not actually known before run time, so the
compiler must assume it complies with the
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platform-defined calling conventions. ABI-
defined custom calling conventions for this
function could shift into the __tls_get_
addr slow path the penalties involved with
preserving registers that would otherwise have
to take place in its callers.

Yet another performance penalty is related with
the fact that __tls_get_addr is always
called through Procedure Linkage Table (PLT)
entries. Since it is defined in the dynamic
loader, calls to it in other modules have to go
through such an entry that loads the actual func-
tion address from the GOT and then jumps to it.

Without such inefficiencies, the instruction se-
quence above would be observed at run time.
However, with all the inefficiencies, the dy-
namic instruction trace after an instructions that
calls __tls_get_addr is as follows. Addi-
tional instructions, not present above, are em-
phasized. GOToff(sym) denotes the offset
from the GOT to the address of symbol sym.

jump to address loaded from PLT GOT entry
set up stack frame
save call-preserved registers used in slow path
save and set up GOT register if needed
load reg1← TP[DTVoff]
load reg2← GOT[GOToff(generation_counter)]
branch to slow path 1 if reg1[DTVGCoff] < reg2
load reg2← reg1[arg1 × DTVentrysize]
branch to slow path 2 if reg2 == UNALLOCATED
let result← reg2 + arg2
restore registers
destroy stack frame
return

Even if the compiler could be improved so as
to avoid setting up a stack frame, the GOT-
relative addressing mode to access the gener-
ation counter is unavoidable. As for the PLT
entry, the additional jump could be avoided by
using a call sequence in __tls_get_addr
callers that referenced its GOT entry directly,

precluding lazy relocation of this reference and,
most often, requiring larger code size at all
call sites, negatively impacting the instruction
cache efficiency.

3.2 TLS Descriptors

From the previous paragraph, it would seem
that improving the performance of the dynamic
access models would not involve a change in
the access models themselves, but rather in the
compiler used to compile __tls_get_addr.

It is possible, however, to make them more
efficient, by introducing specialized versions
thereof for different situations, and by provid-
ing such specialized versions with additional
information. Let us put aside for a moment the
issue of how to get the most appropriate spe-
cialized version selected efficiently, and con-
centrate on the potential benefits first.

3.2.1 Improving Static TLS

One major shortcoming of __tls_get_
addr is that it fails to take advantage of the
fact that, to access the TLS block for an ini-
tial module, no tests are necessary. Since ini-
tial modules’ TLS blocks are laid out as part of
Static TLS Blocks, all threads’ DTVs already
contain the correct addresses in the entries cor-
responding to such modules, so it would suffice
to dereference the DTV and add the variable
offset.

However, it is possible to do even better in the
Static TLS case: since the initial module’s TLS
block is at an offset from the TP that is the same
for all threads, we can use the provision above
of passing additional information to the special-
ized function and pass it this constant TP offset,
instead of the then-unused module index. Thus,
all this specialized function has to do is to add
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the module’s TP offset to the TP, and then to
the variable offset.

In a further step, this specialized function could
take as arguments, instead of the TP offset and
the variable offset, the precomputed result of
adding them together. This specialized function
is thus reduced to the following pseudo code:

let result← TP + arg
return

Selecting this specialized function reduces sig-
nificantly the computation performed in the
function, rendering its performance very simi-
lar to that of the Initial Exec or even Local Exec
models, discounting the function call overhead.
The use of this specialized version is the most
significant improvement we have introduced,
but there are additional minor improvements to
follow.

One important point to consider is that all spe-
cializations must present the same interface,
such that callers are totally unaware of which
specialization is selected; such selection takes
place at run time, at which point it is undesir-
able to modify code. Therefore, when we mod-
ify the interface of a specialization so as to take
a single argument, we are either determining
that none of the specializations can take more
than one argument, or that this one specializa-
tion will ignore any additional arguments other
specializations might require.

3.2.2 Returning TP offsets

On some architectures, register-plus-register
indirect addressing modes is little or no more
expensive than indirect addressing modes. On
Fujitsu FR-V, for example, there is no single-
register indirect addressing mode: loads and

stores compute the address by adding a regis-
ter to either another register or a constant dis-
placement. On IA32 and AMD64/EM64T, on
GNU/Linux, segment registers are used as TP,
so an instruction with a single-register indirect
addressing mode can be modified to use this
register as an offset from the segment base ad-
dress by using a 1-byte prefix, with no signifi-
cant performance penalty.

On such architectures, it makes sense to ar-
range for the function to return not the address
of the variable, but rather its TP offset. If it is
also possible to arrange for the argument to be
passed in the register used to hold return values,
then the specialization optimized for Static TLS
becomes a single return statement, as on FR-V.
On IA32 and AMD64/EM64T, it could be pos-
sible to achieve the same, but at the expense
of additional code at every call site to load the
argument from memory. Thus, it is more effi-
cient, in terms of code size, to leave it up to the
specialized function to load it before returning.

3.2.3 Linker relaxations

TLS-related relaxations are always defined so
as to turn accesses using dynamic access mod-
els into Initial Exec or Local Exec, when link-
ing an executable. In general, the __tls_
get_addr call sequence, including the in-
structions that set up the arguments, has to con-
tain padding such that, if the linker relaxes the
code to a more efficient access model, there is
room for the instruction that adds the TP and
the TP offset, regardless of whether it is the Lo-
cal Exec link-time constant or the Initial Exec
run-time constant loaded from the GOT.

The convention of returning the TP offset in-
stead of the actual address simplifies linker re-
laxations, because the addition of the TP does
not have to fit in the replacement sequence: it is
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already there, after the call sequence. So it suf-
fices to arrange for the value loaded from the
GOT, or the fixed constant used in Local Exec,
to make it to the register in which the call would
have returned the TP offset. With the reduced
padding, code size is reduced, improving the
efficiency of the instruction cache.

3.2.4 Avoiding unnecessary DTV updates

The use of a global variable, namely the gener-
ation counter, when testing whether a DTV is
up to date, is not only a bad idea because of the
potential performance hit associated with sav-
ing, setting up and restoring the GOT register.

The fact that some thread A may choose to
dlopen or dlclose a module a may slow down
another thread B that accesses TLS variables
from module b. This occurs because the test in
__tls_get_addr checks whether the DTV
is up to date, and not whether it is recent
enough to access a variable in the requested
module.

While indexing some TLS module table to de-
termine the generation count associated with
a module could be feasible, it would signifi-
cantly slow down the fast path. However, with
our provision of passing additional information
to the specialized functions, we can arrange to
have the minimum generation count needed to
access a module’s TLS passed to a specialized
function used to handle Dynamic TLS.

Since we have arranged for the Static TLS spe-
cialization to use a single argument, we can do
the same for the Dynamic TLS specialization
at hand. Since there is no way to avoid the re-
quirement for the module index and the offset,
however, in order to fit all this information in
a single argument, the only solution is to use
indirection.

Since Dynamic TLS is designed to be the rare
case, allocating additional storage for refer-
ences to such variables is not deemed unaccept-
able, so what we do here is to arrange for the
Dynamic TLS specialization to be passed, as
its argument, a pointer to a data structure con-
taining not only the module index and the off-
set, but also the generation counter needed by
the module. The specialized function can thus
avoid the need for the GOT register in the fast
path, using for the test the generation counter
stored in this data structure passed as its argu-
ment, also avoiding DTV updates that would
not affect its ability to access the requested
module.

On Fujitsu FR-V, a particular detail of the
ABI[11] required an additional field in this data
structure. The ABI requires the GOT register
to be set up for a function not by the function
itself, but rather by its caller. Since no special-
izations of TLS calls would require the GOT
register in their fast paths, we have arranged for
the argument data structure to contain the GOT
pointer the specialization may need.

An additional micro-optimization, applied on
FR-V, is to arrange for this data structure to
contain not the module index, but rather the
offset into the DTV where its entry is stored.
This saves a shift-left instruction in the fast path
of the specialized function, because FR-V does
not have an addressing mode that adds an in-
dex register multiplied by a constant to a base
register.

3.2.5 Specialized calling conventions

The IA32 version of __tls_get_addr on
GNU/Linux has traditionally used custom call-
ing conventions in that its arguments are not
passed on the stack, as usual, but rather on reg-
isters. This should also be the case of special-
izations of this function.
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Besides specifications of where arguments are
passed and where return values are stored, an-
other important aspect of calling conventions
is that of defining which registers a function
can modify without preserving (caller-saved or
call-clobbered), and which have to be saved be-
fore they can be modified (callee-saved or call-
preserved).

The most common TLS cases in code compiled
for dynamic libraries, namely Static TLS spe-
cialization and relaxation for main executable,
can assume that, in a TLS call instruction or its
replacement, no register is modified other than
the one holding the resulting address or TP off-
set.

Only the Dynamic TLS specialization needs a
pair of temporary registers for the fast path, and
potentially several other registers for the slow
path.

Since in this work we are defining a new inter-
face for __tls_get_addr specializations,
we might as well define the conventions regard-
ing preserved registers to privilege the most
common cases. We have thus defined that
the specializations are to preserve all regis-
ters other than the return value, such that TLS
calls can be modeled like simple loads, en-
abling the full register set to be used without
concerns about preserving registers across such
calls. This requires that, when the slow path
of the Dynamic TLS specialization issues calls
to other functions, it preserves all registers that
they might modify. Since it is the slow path,
and it has so much work to do anyway, this ad-
ditional work is insignificant. Unfortunately,
this decision also affects the fast path, in that
it has to preserve the two scratch registers it
needs, but since Dynamic TLS is assumed to
be the uncommon case, privileging the Static
TLS case is a reasonable decision.

3.2.6 Selecting specializations at run time

Now that we have established that both special-
izations work with a single argument, and de-
fined that they should use customized calling
conventions to do their jobs, we are ready to
specify how the appropriate specialization is to
be selected and called.

In the existing dynamic access models, two
GOT entries are needed to hold the arguments
to __tls_get_addr. Since for the special-
ized versions we can use only one, we can use
the other to hold the address of the specialized
function. Then, we arrange for the code, that
used to call __tls_get_addr, to call the
function whose address is stored in that loca-
tion.

As a general rule, we can store the function ad-
dress at the GOT entry that would, in the tra-
ditional access model, contain the module in-
dex, and the argument to the function, in the
GOT entry that would contain the variable off-
set. Since, for a given module, the decision on
whether its TLS block can be accessed with the
Static or the Dynamic specialization is the same
for all variables in the block, this general rule
works even for ABIs that enable the module in-
dex and the variable offset to be in non-adjacent
entries, with potential use of the module index
entry to access multiple variables.

The machines on which the new access model
was implemented, however, all use adjacent
GOT entries, since they make the code much
simpler, at the expense of additional GOT space
due to the multiple copies of the the same mod-
ule index. Nevertheless, the absence of such
sharing enables lazy processing of relocations,
as detailed in Section 3.2.8. When the entries
are adjacent, they form a data structure that we
call TLS Descriptor, named after Function De-
scriptors, present in ABIs such as IA64’s[12],
PPC64’s[13] and FR-V’s[11], that contain a
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Figure 2: General structure of a TLS Descrip-
tor, with 3 different specialization types, for
Static and Dynamic TLS, and Lazy TLS that
decays to one of the other two on the first use.

function’s entry point and a context pointer,
e.g., the GOT pointer to be used by the func-
tion. TLS descriptors also take two words, but,
instead of a context pointer, their second word
contains an argument to the function whose
pointer is in the first word, as depicted in Fig-
ure 2.

Fujitsu FR-V has never had a traditional TLS
ABI, since it was already designed taking ad-
vantage of the new access model, but we can
imagine that, if it had, the instruction sequence
would be as follows.

sethi.p #gottlsgdhi(var), gr8

setlo #gottlsgdlo(var), gr8
ldd #tlsgd(var)@(gr15, gr8), gr8
call __tls_get_addr

The ldd instruction loads into the pair of regis-
ters starting at gr8 the pair of words starting at
the address obtained by adding gr15, the GOT
pointer, and gr8, whose value was set to the
linker-computed displacement for the GOT en-
try containing the module index and the vari-
able offset. In the actual FR-V TLS ABI, the
call sequence is as follows.

sethi.p #gottlsdeschi(var), gr8
setlo #gottlsdesclo(var), gr8
ldd #tlsdesc(var)@(gr15, gr8), gr8
calll #gettlsoff(var)@(gr8, gr0)

The variation here is mainly from relocations
that reference a TLS Global Dynamic GOT en-
try to those that reference a TLS Descriptor
GOT entry, and the last instruction, that is a call
to a named function in the former, that goes
through a PLT entry, and a call to a given ad-
dress in the latter, that goes straight to the spe-
cialization. The address was loaded into gr8;
gr0 is fixed at zero.

On GNU/Linux IA32, the difference is a bit
more significant. The current TLS ABI speci-
fies the following sequence for the General Dy-
namic access model.

leal var@TLSGD(,%ebx,1), %eax
call ___tls_get_addr@PLT

This uses an extraneous addressing mode for
leal, equivalent to (%ebx), but longer, mak-
ing the instruction long enough for the relax-
ation replacement, that takes 12 bytes. Our ver-
sion, however, is as short as 8 bytes for the
call sequence, although it requires an additional
byte for the segment prefix to the load or store
instruction that uses the resulting offset.
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leal var@TLSDESC(%ebx), %eax
call *var@TLSCALL(%eax)

Note that var@TLSCALL is just an annota-
tion to aid linker relaxations, such that the two
instructions can be scheduled apart. The ac-
tual instruction encoding is the two-byte indi-
rect call, that calls the function at the address
stored at the memory location whose address
was computed into %eax by the leal instruc-
tion. The called specialization knows that, at its
entry point, %eax points to the TLS descriptor,
so it can load its argument from the descriptor.

On AMD64/EM64T, the original call sequence
contains several meaningless padding prefixes
to make room for relaxation substitutions, as
follows.

.byte 0x66
leaq var@TLSGD(%rip), %rdi
.word 0x6666
rex64
call __tls_get_addr@PLT

Our improved call sequence follows the very
same pattern as IA32, with the difference that
GOT accesses do not involve a fixed register,
but are PC-relative, and register and addresses
are 64-bits wide. While the above takes 16
bytes, the following takes as little as 9, plus one
for the byte prefix in actual accesses.

leaq var@TLSDESC(%rip), %rax
call *var@TLSCALL(%rax)

3.2.7 DTV compression

When this new access model is used, and the
traditional one is not (i.e., __tls_get_addr
is never called directly), it is possible to remove
all static entries from the DTV, since they are
never used. Since we know that every access to

Static TLS will go through the static specializa-
tion, that does not use the DTV, entries for such
modules can be entirely removed, enabling the
initial DTV to be trivially set up.

This offers a slight speed up in thread creation
for processes that have multiple initial modules
with TLS segments, potentially saves memory
by delaying the need for dynamically growing
the DTV, and enables the DTV to be reduced
by half, since its current definition reserves a
word in every entry to tell whether it is static
or dynamic when the time comes to release that
entry and free up its storage.

Even when the traditional dynamic TLS ac-
cess model is used, it is possible to enable this
DTV compression, as long as the index range
reserved for initial modules can be easily dis-
tinguinshed from that of dlopened modules, for
example, by having the most significant bit set.
__tls_get_addrwould then have to recog-
nize this case and use an alternate code path
that, instead of relying on the DTV, obtained
the module’s constant TP offset from a separate
table.

3.2.8 Lazy relocations

Processing relocation entries lazily enables sig-
nificant speedups in start-up time for applica-
tions. The mechanism consists in performing a
very quick pass over relocations that can be re-
solved lazily (something that can be determined
by the linker), setting them up such that, only
when they are used for the first time are they
actually resolved.

This has traditionally been used to resolve func-
tion addresses in dynamic linking. A call to
a function that does not bind locally (i.e., that
may be resolved to a definition in a separate
module) is directed to go through a PLT entry,
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that loads an address from the GOT and jumps
to it.

In the first pass, the dynamic loader sets these
GOT entries to point to a stub that calls the dy-
namic resolver with enough information for it
to identify the relocation that it should resolve
at that time.

The dynamic resolver applies the relocation,
modifying the GOT entry such that subsequent
calls go straight to the actual function, and then
transfers control to the function that should
have been called, as if it had been called di-
rectly.

Although lazy relocation processing is very of-
ten applied to function calls, it is never applied
to data accesses, since there is no transfer of
control involved, and introducing it would ren-
der the access model too costly in terms of per-
formance.

In our optimized dynamic access model, how-
ever, there is a control transfer, and we realized
we could use that to enable lazy relocation pro-
cessing. In the quick pre-relocation pass, the
function address in the TLS descriptor is set to
another specialization that handles lazy reloca-
tion, and the argument is set so as to point to
the relocation itself.

When the function is called, it resolves the sym-
bol the relocation refers to, decides whether to
use the Static or Dynamic specialization and
sets up the TLS descriptor according to the de-
cision, such that subsequent calls involving the
same TLS descriptors go straight to the most
efficient specialization.

Care must be taken to ensure that the TLS de-
scriptor is never in a state that, should another
thread perform an access using it, will yield an
incorrect result.

On FR-V, that is not very difficult, since the in-
structions that read and store a pair of words

are atomic given sufficient alignment. On IA32
and AMD64/EM64T, however, there is no in-
struction that can read or modify a pair of words
atomically. Since requiring every call site to
use synchronization would be too costly, a solu-
tion was devised that requires synchronization
only in the lazy relocation function itself.

The lazy relocation specialization first acquires
a dynamic loader lock and verifies that the TLS
descriptor still points to itself. If so, it modifies
it so as to point to a hold function and reads the
argument. At that point, it can release the lock
and compute the final value of the TLS descrip-
tor, using the argument read while the lock was
held.

Before modifying the descriptor, it acquires the
lock again, wakes up any threads that might be
waiting for it in the hold function (using say
a condition variable), finally releasing the lock
and transferring control to the function whose
address was stored in the TLS descriptor.

The hold function simply acquires the lock and,
in a loop, tests whether the TLS descriptor still
points to it and, if so, waits on the condition
variable until it is signaled, otherwise, it re-
leases the lock and transfers control to the func-
tion specified in the TLS descriptor.

A simpler, yet less scalable, alternate design
for the hold function, that does not involve
condition variables, relies on the lock alone:
the lazy relocation function does not release
the lock throughout its operation, and the hold
function is as simple as acquiring the lock, re-
leasing it and transferring control to the func-
tion specified in the TLS descriptor. This de-
sign is quite appropriate when the relocation-
processing code in the dynamic loader already
requires a lock to be held, as it is the case in
GNU libc.
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4 Performance

Verifying any actual performance improve-
ments provided by the optimizations intro-
duced herein proved to be a major challenge.
To the best of our knowledge, the only library
that makes heavy use of Thread Local Storage
is GNU libc itself. To make matters worse,
GNU libc takes advantage of the fact that its
dynamic loader and C library are always loaded
initially, and thus they use the Initial Exec ac-
cess model throughout the libraries offered by
GNU libc, ensuring that any thread-local vari-
ables accessed with this access model are lo-
cated in one of these two libraries.

Even forcing GNU libc to not use the Ini-
tial Exec access model and running the Native
Posix Thread Library (NPTL[14]) performance
benchmark to evaluate the benefit of the opti-
mization to this benchmark showed no differ-
ence whatsoever. Investigation showed that this
benchmark called __tls_get_addr only a
handful of times during a test run that took tens
of seconds, so performance differences could
not possibly be exposed by this benchmark.

The main reason as to why the thread perfor-
mance test did not use dynamic access models
very often is that, first of all, it did not exer-
cise thread-local storage access itself and, even
if it did, it is a main application, not a dy-
namic library, so dynamic models do not apply.
As for the libraries it uses, GNU libc’s C and
thread libraries maintain information pertaining
to threads in the thread’s static TLS block, and
access it using a model similar to Local Exec,
so they are not affected by the choice to not use
the Initial Exec model within libc.

Although Gomp[15], the implementation of
OpenMP[16] for the GNU toolchain, has very
recently become a viable platform for mea-
suring TLS performance, the SPEC OMP2001
benchmark uses threadprivate variables

in only one of its tests, and even then, not in
a dynamic library, so using this benchmark was
not viable either, and we were left with the need
for creating synthetic microbenchmarks.

We have created a total of 40 tests for our
benchmark, such that every test is represented
as a function that returns a result that is some-
how related with one or more thread-local vari-
ables, with variations in 4 different dimensions,
described in the following paragraphs.

Operation Half of the tests compute the ad-
dress of a thread-local variable (addr), whereas
the other half computes the actual value stored
in the thread-local copy of the variable (load).
This exposes differences related with the ef-
ficiency of accessing a thread-local variable
without explicitly adding the thread pointer to
its relative location. On all tested CPUs, the
TP register is a special register whose contents
cannot be read or modified from userland. It
can be used as a base register to read or mod-
ify a thread-local variable, but computing the
address of a variable requires loading the regis-
ter’s value from a reserved location in the Static
TLS block.

Timing All of the timing is performed using
the clock tick counting instructions available
on the CPUs we’ve used for testing. Half of
the test functions time their operation by them-
selves (Internal), storing the number of clock
ticks elapsed while performing the operation in
a pointer passed in as an argument. The other
half perform no timing whatsoever, relying on
their callers to obtain the clock tick count for
the entire call (External). Unlike the previ-
ous dimension, that intends to expose differ-
ences, this one intends to confirm the perfor-
mance improvements we’ve achieved, by offer-
ing multiple performance measures of different
but functionally-similar code.



172 • Speeding Up Thread-Local Storage Access in Dynamic Libraries

The confirmation was not straightforward,
though; the little room for scheduling in the in-
ternal timing variants and the high pressure on
the registers used by both the timing instruc-
tions and function call return values would cre-
ate pipeline bubbles that, without care to avoid
such worst-case conditions (unlikely to occur in
real life), would have made some tests that per-
form very little work appear to be slower than
some that perform much more work.

Access model We have four different kinds
of tests in this dimension, in which knowledge
about the location of the thread-local variable
used varies, plus one kind of test that combines
access to multiple variables.

Half of the single-variable tests use Initial Exec
access models, but in half of these, the compiler
generated Initial Exec code because it was told
the variable was in Static TLS (OIE, for origi-
nal IE); in the other half, the compiler was told
the variable was in Dynamic TLS, so it gener-
ated General Dynamic code, and then the linker
relaxed that to Initial Exec, being aware of the
Static TLS location of the variable (RIE, for re-
laxed IE).

The other half of the single-variable tests use
General Dynamic access models. In half of
these, the variable is in Static TLS, so our main
optimization kicks in (SGD, for static GD); in
the other half, the variable is in Dynamic TLS,
so the main optimization does not apply (DGD,
for dynamic GD).

The multi-variable tests (Cmb, for combined)
subtract the values or addresses of the RIE and
the SGD variables, and adds the value or ad-
dress of the DGD variable, returning the result.
All this work grants the compiler more oppor-
tunity to hide the latency of certain operations
through instruction scheduling.

Local State Half of the test functions are so
simple that, when they have to call __tls_
get_addr or equivalent, any automatic vari-
ables of their own can easily be assigned to call-
preserved registers, so the optimized calling
conventions suggested in this paper show no
benefit whatsoever (Min St). In order to expose
such benefits, the other half of the test func-
tions contain a large number of automatic vari-
ables (Max St) whose contents are forced into
registers before and after the TLS operation,
such that, with the standard calling conven-
tions, almost all call-clobbered registers have
to be spilled before the call and reloaded after
it, whereas with our optimization, none of this
takes place.

The number of variables is chosen such that
all but one of the general-purpose registers are
taken up by these variables. On IA32, we use
5 such variables, considering that %ebx is re-
served as the GOT pointer, and that %ebp can
be used as a general-purpose register, making
up for 6 available registers, 3 call-saved, 3 call-
clobbered. On AMD64, we use 14 such vari-
ables, since %esp is not really usable in the
16-register set. On both CPUs, we keep one
register available to hold the result of the TLS
operation, with the explicit intention of show-
ing a worst-case scenario for the traditional
code, where the advantages of the custom call-
ing conventions would be greatest. The actual
benefit from this change will be somewhere in
between the two variants in this dimension.

The 40 combinations of the above variations
are all located in a dynamic library that is
dlopened by the main benchmark program.
This ensures that the test functions do not get
inlined into the main benchmark loop, which
might enable hoisting of operations, making
operations look faster than they are.

We build two such dynamic libraries for each
tested architecture: one created with the com-
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piler configured to generate code in the tra-
ditional way (Ol), another following our new
proposed method (Nu). A full test run goes
through all 40 tests for each of the 2 libraries,
which makes up for the 80 tests total.

Every test is run a large number of times, in two
different configurations. In one configuration,
we run each one of them in a tight loop to then
proceed to the next test; in the other, each test
is run once in a randomized sequence generated
for every iteration in a loop. More details are
given below.

Although running the tests in a tight loop has
enabled us to initially measure a lower bound
for the execution time of each test, such lower
bound was initially not thought to be very rep-
resentative of real-life performance, since it de-
pends heavily on hot caches and nearly-perfect
branch and call/return prediction, something
that is not necessarily expected in practice.

In order to try to obtain more representative
results, we collect all of the tests into a vec-
tor and then, for every iteration in the main
benchmark loop, we get the vector sorted at
random and then iterate over the randomized
vector, running each test once per iteration in
the main loop. Each test run produces a time
result that is immediately logged to a file. This
logging and randomization helps avoid getting
cache, branch and call/return prediction hits
too common for any single test, which enables
us to achieve moderately reproducible results
with thousands of runs of each test, as opposed
to hundreds of millions that we needed in the
tight-loop test. It often (but not always) gets
us identical per-iteration lower bounds, but the
average run times no longer tend to the lower
bound as the iteration count increases.

Unfortunately, this randomization, and the pos-
sibility of long interrupts and context switches
that could skew averages up at random, have
caused average times over 1 million runs to

vary by as much as 30%, even after discarding
values that appear to be too high.

That said, in spite of the significant error mar-
gin in the exact averages, we’ve verified that
there appears to be a strong correlation between
improvements in minimum times, as measured
in the tight loop, and improvements in the aver-
age times, although speedups tend to be smaller
for averages than for minimums.

Given this correlation and the irreproducibil-
ity of the exact average results, we’ve decided
to not include the average times in the pa-
per. Since binaries and the complete source
code of the implementation, including the
benchmark program that can generated them,
are available for download at http://www.
lsd.ic.unicamp.br/~oliva/, publish-
ing only the minimum times, that are perfectly
reproducible, was deemed enough.

4.1 Analysis

Testing procedure was as follows. A toolchain
was built on Fedora Core 4, based on snapshots
of the GCC and GNU binutils development
trees taken on Oct 30, 2005. This toolchain was
capable of generating code for both IA-32 and
AMD64, selecting the old or the new TLS call
sequences through a command-line switch. A
development snapshot of GNU libc, taken on
the same day, was built using this compiler for
both IA-32 and AMD64. The IA-32 version
was built with optimizations for Pentium II or
newer; the AMD64 version was built with de-
fault settings. The benchmark program and li-
braries were built with the same settings.

The benchmark program was run on 3 different
environments, each one described in the cap-
tion of the corresponding table: a Pentium III
processor ran the 32-bit benchmark (Table 1),
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Internal Timing External Timing
Acc Min St Max St Min St Max St
Mod Op Ol Nu Ol Nu Ol Nu Ol Nu

OIE
load 33 33 37 37 48 48 58 58

addr 33 33 38 38 45 45 55 55

RIE
load 35 35 40 38 50 50 61 60

addr 34 34 39 37 48 50 62 59

SGD
load 64 39 67 43 77 53 88 64

addr 63 39 67 43 76 53 87 64

DGD
load 64 58 67 58 77 67 90 78

addr 63 53 68 58 76 67 87 76

Cmb
load 104 63 108 77 110 78 131 100

addr 94 64 101 69 113 78 123 90

Table 1: Minimum run times, in CPU cycles,
over 100000000 iterations on a Pentium III
Speedstep 1.0GHz (32-bit only). The timing
overhead, included in the figures above, was
measured as 33 CPU cycles.

and an Athlon64 processor ran both the 32-
bit (Table 2) and the 64-bit (Table 3) bench-
marks. In all cases, the processors were con-
figured to avoid clock speed switching, and the
boxes were very lightly loaded, except for the
benchmark program. The results were mechan-
ically converted to LATEX tables.

Figures 3, 4, 5, and 6, also generated mechan-
ically, display information from the SGD and
DGD internal-timing tests in the tables. In
each chart, the left cluster of bars is for Min
St tests; that on the right is for Max St tests.
Within each cluster, the bars represent each of
the tested machines, in the same order that their
tables appear. Within each bar, the dotted line
represents the timing overhead (see below), the
lower bar is the Nu time and the upper bar is the
Ol time. Speedups are computed in each bar;
the lower speedup is computed as a fraction of
the Ol and Nu numbers directly from the table,
the upper speedup is computed by first subtract-
ing the timing overhead from the dividend and
the divisor. The real speedup in practice ought
to be between the two figures.

The timing overhead is the difference in the
clock tick count between two subsequent ex-

Internal Timing External Timing
Acc Min St Max St Min St Max St
Mod Op Ol Nu Ol Nu Ol Nu Ol Nu

OIE
load 9 9 10 10 24 24 29 29

addr 5 5 10 10 21 20 30 29

RIE
load 9 9 17 10 25 25 34 30

addr 5 5 13 10 21 22 30 29

SGD
load 34 9 40 15 49 29 57 31

addr 32 9 38 11 44 25 56 31

DGD
load 35 23 40 25 48 38 57 42

addr 31 18 38 21 46 37 56 40

Cmb
load 76 29 79 39 78 46 98 59

addr 66 23 68 32 76 42 87 49

Table 2: Minimum run times, in CPU cy-
cles, over 100000000 iterations on an Athlon64
3000+ (1.8GHz) notebook, running the bench-
mark compiled for 32-bit mode. The timing
overhead, included in the figures above, was
measured as 8 CPU cycles.

Internal Timing External Timing
Acc Min St Max St Min St Max St
Mod Op Ol Nu Ol Nu Ol Nu Ol Nu

OIE
load 9 9 9 9 9 9 19 19

addr 8 8 8 8 9 10 18 17

RIE
load 9 9 22 9 13 9 32 19

addr 5 8 20 8 9 10 28 16

SGD
load 26 9 37 11 29 15 47 20

addr 23 9 36 10 28 12 47 18

DGD
load 26 25 37 25 29 26 48 31

addr 23 21 36 21 28 22 47 31

Cmb
load 47 30 62 39 52 31 72 50

addr 42 23 59 28 49 27 68 37

Table 3: Minimum run times, in CPU cy-
cles, over 100000000 iterations on the same
Athlon64 notebook from Table 2, running
the benchmark compiled for 64-bit (AMD64)
mode. The timing overhead, included in the
figures above, was measured as 5 CPU cycles.
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Figure 3: SGD load internal timing results.
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Figure 4: SGD addr internal timing results.

ecutions of the instruction that obtains this
count, including the time needed to copy the
contents of the first measurement elsewhere be-
fore they are overwritten by the second mea-
surement. Careful analysis of the tables shows
that the overhead is greater than or equal to the
times measured for certain simple operations.
Such simple instruction sequences are believed
to fit in, or even help avoid additional pipeline
bubbles.

OIE tests confirm the expected absence of
variation, given that it is the exact same code
being generated for both the old and the new
TLS conventions.
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Figure 5: DGD load internal timing results.
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Figure 6: DGD addr internal timing results.



176 • Speeding Up Thread-Local Storage Access in Dynamic Libraries

RIE remains nearly identical in terms of per-
formance on IA-32 for the minimum-state tests,
as expected. For the maximum-state tests, the
new method begins to show improvements, as
it enables the compiler to preserve more state
across the TLS calls that, in these tests, end
up being relaxed, but the advantage remains
since the linker cannot recover the performance
loss due to register spilling and reloading. The
performance loss in the 64-bit minimum-state
address RIE probably indicates there might be
better instruction sequences we could use for
relaxation.

SGD is where the new method really shines.
That is no surprise, since it’s exactly the sit-
uation that the new method is designed to
improve, and fortunately also the most com-
mon situation in code generated for dynamic
libraries that accesses thread-local variables.
Absolute reductions in clock cycles are consis-
tent between internal and external timing in 32-
bit mode, where the calling conventions opti-
mization plays a less significant role; in 64-bit
mode, the absolute reductions in clock cycles
are consistent if you compare results among the
minimum-state tests, or among the maximum-
state ones.

DGD shows that performance is improved
significantly even in the case that the new
method regarded as the slow case. Clearly, in
64-bit mode, most of the savings stem from the
optimized calling conventions, that enable the
retention of state in registers, as shown in the
comparison between minimum- and maximum-
state in the internal timing column, where the
new model remains unchanged upon the growth
in state and the old model slowed down by a
significant amount. In the external timing col-
umn, the overhead from having to preserve all
callee-saved registers that are used is noticeable
in the maximum-state column, but not as much

as in the old model. In 32-bit mode, the ability
to check whether the DTV is up-to-date with-
out setting up the GOT pointer is likely what
brings most of the benefit.

Cmb essentially only confirms the results
above, not offering any obvious new insights.

5 Conclusion

The proposed optimization improves perfor-
mance of access to thread-local variables from
dynamic libraries by a big margin for initial li-
braries, without any data size penalty and most
often with code size reductions. For dlopened
libraries, there are still performance advan-
tages, but to a lesser, yet still significant extent,
and there are data size penalties.

It should be highlighted that the performance
gains from lazy relocations, by avoiding reloca-
tion processing at load time, and from code size
reductions, by improving the instruction cache
hit rate, have not been taken into account at all
in the micro-benchmarks exposed here.

The implementation is readily available for
widely-used CPU types, under Free Software
licenses that enable any library to take advan-
tage of this novel technique.

Some open questions remain to be answered in
future work: whether there are relaxation se-
quences that could make the new relaxed code
at least as fast as the old one on AMD64,
and faster on IA32; whether returning an off-
set instead of an address from the specialized
__tls_get_addr calls does indeed help im-
prove performance; whether enabling the spe-
cializations to clobber one or two registers,
which would enable the dynamic-case fast path
to save fewer or even no registers, would cause
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a measurable decrease in performance in the
more common cases; how much of a perfor-
mance improvement could have been obtained
over the old model by using the same call se-
quences, and only modifying the run-time so as
to compute relocations differently, and modi-
fying __tls_get_addr to cope; how much
benefit would be obtained by implementing
DTV compression; how well the optimizations
described here do on other architectures.
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