
Consistent Views at Recommended Breakpoints

Alexandre Oliva
Red Hat

aoliva@redhat.com

Abstract

When users of source-level debugging and monitoring
programs choose to inspect the state of the program at
a certain line number, it is desirable that effects of logi-
cally prior source statements be in the picture presented
to the user, and that effects of subsequent statements not
be in it. However, as optimizations change, drop and re-
order code fragments, concerted effort is required of the
compiler and the debug information consumer to select
appropriate inspection points, and to reconstruct coher-
ent pictures for the user.

We propose a robust method for the compiler to select
and annotate meaningful, consistent inspection points,
and debug information extensions to support multiple
coherent pictures at a single program location. They en-
able debug information consumers to stop at inspection
points that could not be represented otherwise, and to
advance to the user-visible states of subsequent source
lines, even in the absence of intervening executable in-
structions.

1 Introduction

Much effort has been put into maintaining, throughout
compilation, the association between source variables
and their run-time locations or values, as well as be-
tween executable code fragments and their correspond-
ing source-code line numbers.

However, it is often the case that, because of optimiza-
tion, code fragments from one statement run before pre-
vious statements complete. Thus, when debug informa-
tion consumers wish to inspect the state of the program
at a certain line, the picture they expect may not be avail-
able at the selected inspection point. Indeed, deepend-
ing on instruction reordering, the expected picture may
not be available at any instruction generated out of the
chosen statement.

In earlier work[2], we have introduced Variable Track-
ing at Assignments (VTA), i.e., annotations that bind
user variables to expressions that denote their location
or value, and whose ordering is maintained unchanged
during compilation, regardless of instruction reordering.
As such, these annotations offer a progressive view of
the side effects of source statements, as expected from
the source-level point of view.

In this work, we take advantage of the stability of these
annotations over reordering optimizations, and intro-
duce additional annotations to provide the missing in-
formation, so as to select the ideal inspection point for
each source line or statement, so as to offer a view of
the program state that matches the expectations of an
non-optimized compilation.

This article is structured as follows. In Section 2, we
cover some of the background of debug information
generation and variable tracking at assignments. Sec-
tion 3 describes the newly-proposed annotation to mark
the frontiers between statements. Section 4 justifies
and proposes extensions to existing debug information
formats[1] to enable multiple inspection points per pro-
gram location, and Section 5 offers some advice to de-
bug information consumers. Section 6 concludes with
suggestions and plans to deal with situations that are not
covered in the present work.

2 Background

There are two aspects of debug information we are con-
cerned with in this article: line numbers and variable
locations. They’re described in independent sections in
standard debug information formats such as DWARF.
They’re designed so that debug information consumers
can find, for a given PC (program counter, the address
of an executable instruction in the program), the corre-
sponding source location and the run-time location of
available user variables.

1

2.1 Line number information

Line number information is represented in DWARF us-
ing very compact and extensible line number programs.
These programs tell debug information consumers how
to build a table with one row per executable instruc-
tion, with columns indicating address and index (for
machines that pack multiple instructions into a single
word), source file, line and column the instruction per-
tains to, the ISA (for executable formats that support
multiple instruction sets), whether the instruction is the
beginning of a source statement, of a basic block, of a
function epilogue, whether it is the end of a function
prologue.

Line number programs take the form of a sequence of
opcodes. Various standardized opcodes set values for
specific columns in the next row of the table. Others
advance the address, index and line number by fixed
amounts, completing a row and advancing to the next
entry in the table.

The encoding is extensible in that opcodes to set new
columns can be added in a way that does not prevent de-
bug information consumers that are not aware of it from
parsing the remaining line number information. For ex-
ample, DWARF 4 standardized a discriminator column,
that associates an instruction to a block identifier, a num-
ber arbitrarily assigned by the debug information pro-
ducer.

Although it is possible for a compiler to generate line
number programs, computing instruction lengths, align-
ments and padding is easier done by the assembler. To
this end, assemblers often offer pseudo-opcodes such as
.file, to name source files, and .loc, to indicate the
points of line number changes, as well as other columns
for the line number table.

GCC associates source location information with tokens
as they are parsed, and propagates these locations to
declaration and expression trees, then to Generic stmts,
GIMPLE tuples, and RTL insns, maintaining them rea-
sonably accurate as optimizations split, combine, and
reorder executable elements of the various compiler in-
ternal representations. As assembly code is generated
for RTL insns, .loc directives are issued as mandated
by the location information present in the insns.

Some loss is experienced when optimizations restruc-
ture the code, e.g., when portions of different blocks,

identical in effect but not in line numbers, are unified
into a single block. Line number programs in DWARF
are not geared towards supporting scenarios in which the
same instruction corresponds to multiple source code
blocks, even more so if it would be desirable to trace
which source block a specific execution of the instruc-
tion pertains to. This is a problem that we’re saving for
future work.

2.2 Variable location information

Debug information entries for user variables appear in
the linearized tree data structure that represents a com-
pilation unit. Each node in the tree stands for an entity
such as a module, a namespace, a subroutine, a lexical
scope, or a data constant or variable. It may have chil-
dren nodes, as well as multiple attributes. A node that
stands for a user variable may have attributes for a con-
stant value or a location. The location attribute may be
represented as a single location descriptor, applicable to
the entire lifetime of the variable, or as a location list.

A location list is a sequence of tuples that specify an
address range and a location expression. The range is
given as a pair of (relative) addresses: the lowest ad-
dress at which the expression applies, and the lowest
subsequent address at which it no longer applies. Multi-
ple tuples may cover the same address range, implying
the variable is concurrently available at all the given ex-
pressions.

A DWARF version 3 location expression names a regis-
ter, or a memory location, specified as a computation out
of constants, registers and other memory locations. The
computation is described with standardized opcodes on
a stack machine.

DWARF version 4 introduced a new opcode that enables
a location expressions to yield a computed value a user
variable would hold if the computation hadn’t been re-
moved by optimizers. Debug information consumers
that do not implement this new opcode disregard the en-
tire expression, but they’re no worse off than when such
an expression couldn’t be emitted.

In order to generate variable location information, GCC
associates RTL expressions that represent (pseudo) reg-
isters and memory locations with corresponding vari-
able declarations. At the end of compilation, the Vari-
able Tracking pass performs global analysis to infer

2

the dynamic location of variables, as they’re loaded
from memory, modified or copied between registers, and
stored back in memory. At the end of all optimizations,
it emits notes that bind user variables to the inferred lo-
cations, and these notes are later used to generate loca-
tion descriptors and lists.

As more optimizations were introduced before RTL ex-
pansion, this association became highly unreliable for
variables that didn’t live permanently in memory. To
fill the gap, we introduced Variable Tracking at Assign-
ments (VTA), in GCC 4.5. It also involves notes that
bind user variables to expressions that denote their loca-
tion (or value), emitted after each assignment (thus the
name) to variables whose locations may vary over their
lifetimes. Like line number information, these notes
are introduced early on in compilation, before the inter-
nal representation diverges from source code, and main-
tained accurate throughout optimizations with little ef-
fort from optimizers. These notes feed the global anal-
ysis performed by Variable Tracking, so that location
notes can be emitted not only at assignment points, but
also when e.g. registers are reused for other purposes,
but the value of the variable is still computable or avail-
able elsewhere.

3 Statement Frontier Annotations

One particularly important feature of VTA bind notes is
that they offer a progressive view of the computation,
as specified in the source code. Optimizers are not sup-
posed to reorder these notes: even if an assignment oper-
ation is moved or optimized away, the bind note remains
in place, adjusted as required to bind the user variable to
the user-expected value expression.

As such, for programs whose computations amounted
to nothing but assignments to user variables whose lo-
cations might vary over their lifetimes, select VTA bind
notes would be excellent markers for the end of source
statements. Sadly, most non-trivial programs call sub-
routines, and they often use variables that don’t re-
quire dynamic location tracking, so relying exclusively
on VTA bind notes to denote the frontier between one
source statement and the next would not work.

We have thus considered emitting notes at the end of
statements that didn’t end with a VTA bind note. How-
ever, debuggers and their users seldom think in terms of
ends of statements. Users, influenced by debuggers’ in-
terfaces and vice-versa, tend to think in terms of “stop at

Table 1: Source file f.c
1:int f(int a, int b, int c, int d) {
2: int x = a + b;
3: int y = c / d;
4: x -= y;
5: return x;
6:}

line N” to inspect the effects of line N− 1. Indeed, de-
bug information formats such as DWARF have support
for marking the beginning, not the end of a statement in
a line number table. Moreover, the end of a statement
marker would seldom even have an instruction pertain-
ing to that statement to bind itself to: its row in the line
number table would be followed by a row number entry
for the same address, denoting the source location of the
subsequent instruction.

In fact, GCC 4.5 emits (is_stmt 1) markers in
line number information every time the line number
changes. However, these markers, as they are imple-
mented nowadays, seldom form a coherent picture with
the program state exposed by variable location informa-
tion. Our proposal is to issue beginning-of-statement
notes early on in compilation, to keep them from be-
ing reordered with respect to each other and debug
bind notes, so that they become part of the progressive
view, and finally, to use them to decide when to issue
is_stmt markers.

To illustrate the difference, consider the simple function
depicted on Table 1.

Compiled for a superscalar machine that passes argu-
ments on the stack, the scheduler might move the loads
and the division up to hide their latencies, and we’d gen-
erate code such as that of Table 2. Register annotations
indicating source variables are displayed in parentheses
after register names.

GCC 4.5 would generate debug information as depicted
on Table 3. Location information is denoted in # com-
ments. Note how the statement marker for line 3 appears
before that of line 2. Further observe how the compu-
tation from line 4 was substituted into the return value
computation in line 5, so that no code remained in line 4
proper. If you were to request a debugger to stop at line
4, it would stop at line 5, at which point the initial value
of x would no longer be available.

3

Table 2: Optimized f.c

f:
r5(c) <- *(sp+12)
r6(d) <- *(sp+16)
r2(a) <- *(sp+ 4)
r3(b) <- *(sp+ 8)
r7(y) <- r5(c) / r6(d)
r4(x) <- r2(a) + r3(b)
r1(x) <- r4(x) - r7(y)
ret

Table 3: Optimized f.c with GCC 4.5 debug info

f:
.file 1 "f.c"
a => *(sp+ 4)
b => *(sp+ 8)
c => *(sp+12)
d => *(sp+16)
.loc 1 3 is_stmt 1
r5(c) <- *(sp+12)
r6(d) <- *(sp+16)
.loc 1 2 is_stmt 1
r2(a) <- *(sp+ 4)
r3(b) <- *(sp+ 8)
.loc 1 3 is_stmt 1
r7(y) <- r5(c) / r6(d)
.loc 1 2 is_stmt 1
r4(x) <- r2(a) + r3(b)

.L0:
x => r4(x)

.L1:
y => r7(y)
.loc 1 4 is_stmt 1

.L2:
x => r4(x) - r7(y)
.loc 1 5 is_stmt 1
r1(x) <- r4(x) - r7(y)

.Lret:
ret

.Lend:

Table 4: Optimized f.c with proposed debug info

f:
.file 1 "f.c"
a => *(sp+ 4)
b => *(sp+ 8)
c => *(sp+12)
d => *(sp+16)
.loc 1 3 is_stmt 0
r5(c) <- *(sp+12)
r6(d) <- *(sp+16)
.loc 1 2 is_stmt 0
r2(a) <- *(sp+ 4)
r3(b) <- *(sp+ 8)
.loc 1 3 is_stmt 0
r7(y) <- r5(c) / r6(d)
.loc 1 2 is_stmt 1
r4(x) <- r2(a) + r3(b)

.L0:
x => r4(x)
.loc 1 3 is_stmt 1

.L1:
y => r7(y)
.loc 1 4 is_stmt 1

.L2:
x => r4(x) - r7(y)
.loc 1 5 is_stmt 1
r1(x) <- r4(x) - r7(y)

.Lret:
ret

.Lend:

4

Now, consider the alternate is_stmt locations dis-
played on Table 4. The moved-up loads are no longer
the recommended breakpoints. Instead, they are close
to the bind annotations that denote the progressive side
effects expected from the source code. When users stop
at a breakpoint and find themselves at a certain line, they
will be able to observe the completed effects of previous
statements.

4 Debug Information Extensions

Unfortunately, it is still the case that no instruction re-
mained between the recommended breakpoint for line
4 and that for line 5, so asking for a breakpoint at line
4 would land you at line 5. In a way, it is now worse,
because the lack of instructions applies to the recom-
mended breakpoint for line 3 as well. This is not an un-
usual situation. Scheduling an instruction from one line
right after a marker for a different line is not unusual ei-
ther, and this could land you not at a subsequent line, but
also at a previous line, which could be very confusing.

These realizations led to the conclusion that we needed
means to tell apart different source-level states at the
same PC. Indeed, GDB could already present differ-
ent pictures at the same PC, in cases of inlined func-
tions, emulating the different frames that would have
been constructed should the function not be inlined. We
just had to take this notion of multiple views per PC a
step further.

The goal could be stated as enabling the compiler and
the debugger to behave as if a nop instruction was emit-
ted after each is_stmt marker, as far as breakpoints
and single-stepping are concerned, without disruption
for debug information consumers that did not support
the extensions required to this end, and while still per-
mitting the division of work between compiler and as-
sembler in generating debug information.

It was clear that extensions would be required. Both line
numbers and location lists are keyed off of instruction
addresses, so additional information would be required
to establish the link between line numbers and location
expressions pertaining to different views at the same PC.

So say we introduce view identifiers, or view for short.
Adding a new column to the line number table to carry
it is easy, but adding the information to location lists
is not so trivial. For example, testing view numbers

in location expressions would invalidate the expressions
for debug consumers, even though, lacking support for
multiple views per PC, using the ranges alone would
be correct. Modifying the location list format to sup-
port view numbers as part of the ranges would render
the entire location lists incompatible. Adding another
attribute to variables, to point at a view number table,
would work, but it would be a bit wasteful in terms of
space. The solution we chose: adding the view num-
bers right after the end of a location list, with a new flag
attribute, say DW_AT_location_has_views, to in-
dicate their presence.

No disruption to existing debug information consumers,
check. But how about enabling the compiler to generate
location lists and the assembler to emit line numbers?
Surely, if the compiler does all the work, it can choose to
its liking the view numbers for line number table rows,
and then reference them at the view addends at the end
of location lists.

It should be noted that view numbers need not be glob-
ally unique, not even within a compilation unit. As long
as different views at the same PC are assigned differ-
ent numbers, it could be made to work. However, it
is more convenient if view numbers can be regarded as
a less-significant, fractional portion of the address, i.e.,
that they are ordered and can be compared according to
the logical execution order. Compilers can thus reset the
view number whenever the instruction address changes.

Assemblers may accept view numbers from the com-
piler, as additional operands to .loc directives, but
since the assembler knows better than the compiler
when addresses change, the compiler can leave it up to
the assembler to select view numbers in .loc direc-
tives: for every such directive without any intervening
address change, the view counter is incremented. Labels
defined afterwards inherit the view counter in effect, an
assembler pseudo-opcode or functional operator can be
introduced to output the view counter associated with a
label as part of location lists addends.

Given these constraints, labels .L0, .L1, .L2, .Lret
and .Lend can be assigned views number 0, 1, 2, 0 and
0, respectively, so that variable x is marked with say
DW_AT_location_views, and the location list can
be emitted as depicted on Table 5.

5

Table 5: Location list for variable x
.LLSTx:
.long .L0 - f, .L2 - f
.value 1
.byte DW_OP_reg4
.long .L2 - f, .Lend - f
.value 6
.byte DW_OP_breg4, 0,

DW_OP_breg7, 0,
DW_OP_minus,
DW_OP_stack_value

.long .Lret - f, .Lend - f
.value 1
.byte DW_OP_reg1
.long 0, 0
.view .L0, .L2,
.view .L2, .Lend
.view .Lret, .Lend

5 Usage

Being able to stop a program at any line that contained
source code, and inspect its state so that the effects of
all prior statements and none of the effects of subse-
quent statements are visible, is certainly desirable for
debuggers such as GDB, but it is even more important
for monitors such as SystemTap. Such tools ought to
use view information as soon as it is available.

Multiple views per PC enable debuggers to advance the
view to another line without actually changing the un-
derlying state of the program. The ability to step from
one line to another even when no code remained be-
tween their recommended breakpoints may offer users
a closer debugger experience to that of a non-optimized
build, which some users may welcome. Others may be
disturbed if a request to let the program run for a bit
doesn’t, and the PC remains the same. We suggest de-
buggers to offer both possibilities.

6 Future Work

This proposal brings us closer to the ability to debug and
monitor optimized programs as closely as possible to the
non-optimized counterparts. However, a number of is-
sues remain to be addressed when it comes to optimiza-
tions that restructure the code, say, by factoring common

code out of multiple converging blocks, as mentioned in
Section 2.

Saving in debug temporaries the conditions used to de-
cide between multiple blocks is something we already
envisioned, to deal with conditional binds in blocks
combined by if-conversion passes. If this proves effec-
tive, it may pave the way to applying such conditionals
also to select the right view for a PC address.

On a breakpoint specified only by its PC address a de-
bugger may not be able to associate the intended source
line to it. The debugger would have to default, for ex-
ample, to the first view for that PC.

Being able to inspect optimized program state in a way
that better reflects the expectations that would be met
by non-optimized programs should be a significant im-
provement to the usability of debuggers, system mon-
itors and other tools that rely on debug information to
inspect the state of the program.

Acknowledgments

The idea of being able to stop at source lines that had
been completely optimized away was first suggested by
Red Hat colleague Jan Kratochvil. The infrastructure
required to support this turned out to be essential for
statement frontier annotations to bring improvements to
debug information. Thanks to Jan for pointing the way
to a solution for a problem that had not become apparent
yet, and for his reviews and suggestions for this paper.

References

[1] Free Standards Group. DWARF Debugging
Information Format, Version 4, June 2010. http:
//dwarfstd.org/doc/DWARF4.pdf.

[2] Alexandre Oliva. A plan to fix local variable debug
information in gcc. In Proceedings of the GCC
Developers’ Summit, pages 67–76, Ottawa,
Ontario, Canada, June 2008.
http://http://www.gccsummit.org/
2008/gcc-2008-proceedings.pdf.

6

